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A molecular rheological model for amorphous homopolymers filled with nanoparticles is presented. The
fillers are non-agglomerated and interact energetically with the polymers. The model applies to situations in
which the polymer-filler affinity is relatively weak. The essential physics represented in the model includes
chain reptation, the slowing down of diffusion due to energetic interactions of polymers and fillers, chain
stretch, and contour length fluctuations. The model is based on insight obtained from extensive simulations
of the structure and dynamics of these systems. The chain population is composed of free, dangling and
bridging chains, i.e. those that at given time do not contact fillers, contact one filler or multiple fillers,
respectively. As the system evolves, a representative chain switches randomly between these categories.
The representative chain reptates only when free, while contour length fluctuations are performed at all
times. Relaxation is controlled by both tube renewal and the process of chain attachment/detachment to/
from the filler surface. The second process modulates the first, leading to a relaxation with two characteristic
times, in agreement with experimental observations. The parameters entering the model can be calibrated
based on the rheology of the neat polymer and based on results from simulations of the respective filled
system.
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Polymer nanocomposites represent a new class of
materials of significant current interest. The attention they
receive is due to the hope that novel combinations of
properties can be obtained by mixing polymers with nano-
objects. The key requirement is that the fillers have
dimensions similar to those of the polymeric chains. The
chain size, e.g. the radius of gyration, sets an internal length
scale for the material. The nano-object dimensions define
another (or several) length scale. The interplay of these
length scales influences the physics underlying the material
behavior. Indeed, many recent experimental studies
suggest that material properties of the polymer change
upon addition of a small volume fraction of nanometer
sized filler particles [e.g. Wei et al. (2004) [41]; Zhang and
Archer (2002 [39], 2004 [40]); Sternstein and Zhu (2002)
[36]; Ozisik et al. (2005) [21] ]. For example, the viscosity
and the low frequency storage and loss moduli increase
significantly compared to the neat polymer, and a relatively
brittle polymer like PMMA transforms into a ductile one
upon mixing with nanoparticles [Ng et al. (1999) [20] ].

However, not all researchers report improvements in
material properties. In fact, one may find multiple reports
referring to the same material system that contradict each
other. These discrepancies are attributed, in part, to two
reasons. If the fillers are poorly dispersed, one recovers the
properties expected for the equivalent micro-composite
of similar filler volume fraction. If fillers are well dispersed
in the matrix, but the polymer-filler interaction is not
controlled, one may or may not obtain the desired
enhancement in properties. Generally, just as in the case

of regular particulate composites, reinforcement is
obtained if the interface is well bonded. A weak interface
assists cavitation, which improves ductility and fracture
toughness.

These considerations indicate that gaining control over
material processing is crucial. This can be done either by
an experimental trial and error procedure, or by a
combination of modeling and simulation and experiments.
In order to advance along the second path, developing
constitutive representations of the material behavior that
incorporate the small scale physics is important. Such
models offer the possibility to optimize with respect to
nanoscale parameters both material response and
material processing.  This is the objective of the present
work. Specifically, a constitutive formulation is being
presented for the mechanical response of polymer
nanocomposite melts. The composites considered here
are composed from linear polymers and nanoparticles. The
fillers are well dispersed in the matrix.

The development of rheological molecular models for
neat polymers has a long history. The most successful
models available to date are those based on the tube
concept proposed by de Gennes and developed by Doi and
Edwards and other workers [Doi and Edwards (1986) [6];
Bird et al. (1987) [1] ]. In this class of models, the major
relaxation mechanisms are the reptation of the chain within
the mesh of entanglements created by the surrounding
chains, the fluctuations of the tube length and the release
of topological constraints due to the motion of surrounding
chains. Of these, the first two have been treated in the
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mean field sense and led to models that reproduce the
main features of the rheology [e.g. Mead and Leal (1995)
[15]; Mead et al. (1995 [16], 1998) [17] ]. The third effect
is more difficult to be predicted within the mean field
approximation of chain dynamics and various methods
have been developed to cope with this difficulty
[Ianniruberto and Marrucci (2000 [11], 2001 [12]); Milner
et al. (2001) [19]; Graham et al. (2003) [9]; Shima et al.
(2003) [33] ]. The linear rheology of monodisperse neat
melts is well represented by the current models. The non-
linear aspects of the problem are less well described.
Accounting for chain polydispersity poses major problems,
as the controlling physics in such systems is related to
non-linear effects of the constraint release type.

The rheology of mixtures of linear monodisperse
polymers and nanofillers is comparatively much more
difficult to model. The problem was addressed in the
context of short, unentangled polymers [Sarvestani and
Picu (2004) [30] ] and polymers close to the overlap
threshold [Sarvestani and Picu (2005) [31] ]. In the first
case, the dominant response comes from the transient
network of chains that bridge fillers. In the second, in
addition to the secondary network effect [Reichert et al.
(1993) [28] ], one has a slowing down of dynamics due to
the enthalpic interactions between chains and fillers.

In this work, heavily entangled systems are considered.
In this case, the physics is dominated by the confinement
of the representative chain in the “tube” and by its
interaction with fillers. The polymer-filler interaction is
considered relatively weak, such that the probability of
chain detachment (and, potentially, reattachment) on a
time scale comparable with the Rouse time of the
respective chain is smaller, but close to one. As with all
other models of the rheology of neat polymers, one has to
make assumptions about the dominant physics and
attempt to capture it in tractable analytical forms. The key
aspects of the physics considered here are presented in
Section 2. The model is presented in Section 3, while in
Section 4 it is studied how these assumptions influence
the model behavior. A qualitative comparison with
experimental data is presented in the closing section.

The material and overview of simulation data
The system considered here is a mixture of linear

monodisperse homopolymers and nanoparticles. The fillers
are spherical, of identical diameter and are impenetrable
for the polymeric chains. Their deformation during flow of
the suspension is negligible. This system is representative
for materials of the type tested by Zhang and Archer (2004)
[39], Sternstein and Zhu (2002) [36] and Zhu et al. (2005)
[40], in which fillers are properly dispersed in the matrix
(limited filler agglomeration).

The filler radius, R, is smaller or similar to the chain radius
of gyration, Rg, in the neat bulk. Situations in which fillers
are much larger than  Rg may also be represented. This is
the limit of regular polymer composites, in which the filler
size is orders of magnitude larger than the size of the chains.
However, these cases are considered less interesting on
the basis of the experimental evidence discussed in the
Introduction showing that enhanced material properties
are obtained when R and Rg are comparable.

The molecular weight of the chains is assumed to be
much larger than the entanglement molecular weight. The
length of the entanglement segment is denoted by a, while
the number of such segments in a chain is denoted by N.
These quantities are those inferred for the neat bulk
polymer from macroscopic experiments or from atomistic/
molecular simulations. Here it is assumed that a remains

unchanged in presence of nanoparticles, an issue which is
discussed further below.

The model is based to a large extent on insight regarding
the structure and dynamics of this system in equilibrium
obtained by atomistic simulations [Ozmusul and Picu
(2002) [22]; Picu and Ozmusul (2003) [26]; Dionne et al.
(2005) [3] ]. A brief review of the results obtained from
these studies is necessary. The key parameters are those
defining the geometry: the filler radius, R, the average wall-
to-wall distance, d, the chain radius of gyration in the neat
polymer, Rg, and the parameter w describing the polymer-
filler affinity. w represents the ratio of the depth of the
potential well of the polymer-filler vs. polymer-polymer
interactions and includes effects related to surface
heterogeneities (geometric and chemical) which have
been shown to be important in this context [Smith et al.
(2003) [34]]. w can be also regarded as an internal
parameter describing the way polymers interact with fillers
and controlling the life-time of polymer-filler contacts.
Neutral polymer-filler interactions are represented by w =
1. Weak bonding corresponds to w ~ 4, while strong H
bonding corresponds to w ~ 10 and larger. These values
are obtained by using as guideline the strength of various
types of H bonds and the depth of the well of non-bonded
interactions in coarse grained models of polyethylene,
which is about 230 kB [Clancy and Mattice (2001) [2] ]
(with kB being the Boltzmann’s constant).

The structure of this system can be characterized on
multiple length scales. The smallest relevant scale is that
of the Kuhn segment. If the polymer-filler interaction is
purely repulsive (excluded volume), the cohesive
interactions in the bulk polymer and the chain
configurational entropy force retract the beads from the
filler leading to a low density layer in the neighborhood of
the filler surface. It has been conjectured that this effect
assists cavitation [Ng et al. (1999) [20] ]. Neutral and
attractive (energetic) interactions prevent the formation
of such depleted layer. Simulations also suggested that
chain segments as well as entire chains gain preferential
orientation in the vicinity of the filler surface. This is known
in the literature on flat interfaces as a “docking transition”
[Pakula (1991) [24] ]. On the scale of the entire chain, it is
observed that the chain semiaxes (eigenvalues of the
gyration tensor) do not change in length as the center of
mass of the chain approaches the filler, but the direction of
the largest semiaxis (corresponding eigenvector) rotates
in the direction tangential to the filler surface. The
predominance of this transformation over that involving
chain distortion can be understood considering that the
variation in configurational entropy of the entire system
associated with docking is much smaller than that
associated with chain distortion. Interestingly, this result
remains valid even for rather large polymer-filler affinities
such as w = 12. For much larger w it is expected that the
chains in the close neighborhood of the wall flatten out.
This leads to the “passivation” of the filler surface, an
increase of the effective filler diameter and to tethering of
the chains in contact with the surface.

When the average wall-to-wall distance d is equal or
smaller than 2Rg, the probability that a chain contacts
simultaneously more than one filler becomes non-
negligible. Such chains form bridges between fillers; this
leads to a polymer-mediated filler network. This network
is transient in the sense that it is reshaped either by thermal
fluctuations or by deformation.

The statistics of this “secondary network” was studied
by means of simulations [Ozmusul et al. (2005) [23] ]. It
was observed that: a) the number of bridges per filler



MATERIALE PLASTICE ♦ 49♦ No. 3 ♦ 2012 http://www.revmaterialeplastice.ro 135

increases fast as d decreases below 2Rg, b) The chains
forming bridges are not distorted compared to those in the
neat polymer, rather they represent samples of the tail of
the Gaussian end-end vector distribution in the neat
system. c) Each filler carries a large number of dangling
chains which are in contact with the respective filler only.
The distribution of such dangling ends is very broad
(dangling ends of length from 1 to N are present with almost
equal probability). d) A representative contact between a
filler and a chain rarely involves only one bead/Kuhn
segment. The more common situation is when the chain
forms a “train”, i.e. a segment that snakes on the surface
of the filler.

The chain dynamics is perturbed by the presence of
fillers due to both the filler excluded volume effect
(topological confinement), and due to the energetic
polymer-filler interaction [Dionne et al. (2006) [4] ]. The
topological confinement affects the Rouse modes if d <
1.2Rg, while the slowing down effect due to the energetic
interactions is present in all cases, provided w > 2. When
w is sufficiently large to prevent chain detachment, the
chains are essentially tethered to the filler surface. In this
case, the relaxation of the remaining, free chains is slowed
down due to their interaction with the dangling ends.

The lifetime of the chain-filler contacts was also studied
by means of simulations [Smith et al. (2005) [35]; Dionne
et al. (2006) [4] ]. The attachment/detachment process is
controlled by the local energetics and compressibility, the
filler surface topology, and by the diffusive motion of the
chains. The chains execute Rouse motion with an effective
friction which depends on  w. The relationship between
the length of the attached segment (including the trains
and the loops between trains) and the lifetime of the
contact follows Rouse scaling. This relationship breaks
down for strongly adsorbed chains having almost all beads
attached to the filler.

The distribution of lifetimes is strongly skewed toward
the short contact times and has a long tail in the range of
long contact times. The average lifetime of the adsorption,
tad, scales with the affinity w as exp(w/kBT) reflecting the
thermally activated nature of the detachment process (T
represents the absolute temperature). This relation was
inferred from models of dense systems (although
compressibility was not accounted for in these studies). It
must be observed that τad increases very fast with w due
to the exponential, which implies that even for modest w
values, the chains appear tethered to the filler on time
scales comparable to the relaxation of chains in the neat
bulk. Other local details of the dynamics, including the
rotation barriers and the effect of the nanoparticle surface
roughness may affect τad, but these effects were not
studied in detail in the references cited.

The model
The rheological model presented below is based on

these findings. At given time, the system contains fractions
φ0, φ1 and φ2 of free chains that contact no filler, dangling
and bridging chains, respectively (φ0 + φ1 + φ2 = 1). It is
assumed that the bridging chains contact no more than
two fillers. A schematic representation of the three types
of chains is shown in figure 1. Dangling chains are
composed from two dangling segments of length N1 and
N2, while bridging chains are composed of two dangling
segments of length N1 and N2, and a bridging segment of
length N3 (N1+N2+N3 +2=N, with N being the number of
entanglement segments of the monodisperse chains in
the melt).

Relaxation in this system takes place by reptation, which
is modulated by the chain-filler attachment/detachment
process. Since the system is considered heavily entangled
and τad is not much higher than τR (τR is the longest Rouse
relaxation time) Rouse relaxation is neglected.

We consider that a representative chain changes type
in average every τad, switching at random from one sub-
population to another. The number of chains leaving a
population in any given interval of time is equal to the
number of chain entering that group, in order to maintain
the fractions φ constant. Note that the probability of
switching from free to bridging is much lower than that of
switching from free to dangling and from dangling to
bridging (and vice-versa), and the associated mean time
should be on the order of τad

2. This distinction is ignored in
the numerical examples presented in Section 4.

Tube renewal takes place as in the neat system, by
reptation and by contour length fluctuations. Reptation
occurs only when the chain is free, while contour length
fluctuations are performed at all times.

Here it is considered that the characteristic length scale
of the reptation process, the tube diameter, a, is the same
as in the neat system. Since only the free chains reptate,
and these are located at some distance from the filler
surface, the assumption seems plausible. Suggestions
were made in the literature that a changes in the vicinity of
a rigid wall [Ganesan and Pryamitsyn (2002) [8] ]. It is
clear that if the density at the wall is different than that in
the bulk (excluding the usual packing fluctuations which
are short ranged), the entanglement length should change.
If the density is similar to that in the bulk, the answer is not
obvious. If one uses the evaluation method for a based on
packing considerations [Kavassalis and Noolandi (1988)
[13]; Fetters et al. (1999) [7] ], a change of a is expected
simply based on topology; however, it is not clear that the
method is transferable from the neat bulk polymer to the
situation studied here. Simulations of equilibrium dynamics
in large models employing chains significantly longer than
the entanglement length indicate that the tube diameter
computed as a mean over all the chains in the filled system,
is identical to that in the neat polymer [Picu and Rakshit,
(2007) [27] ].

The fillers are considered to move affinely with the
macro-deformation. If the filler-polymer interaction is
attractive (the only situation of importance if reinforcement
is desired) the situation is akin to that in networks. The
fluctuations of a network node decrease in amplitude with
the network coordination number. Here, the node is the
filler and the “coordination” is equal to the number of
bridges per filler which, in all cases of interest, is larger
than 3. Since this “network” is not permanent, it should be
assumed that the fillers perform random walks with a
characteristic time on the order of τad, i.e. much slower
than both the beads and the chain centers of mass. Hence,
the assumption of affinely moving fillers is based on the
separation of time scales between the chain and filler
diffusion processes.

The average lifetime of the chain-filler attachments τad
is considered to be larger than τR, the Rouse time of the
entire chain. This corresponds to w > 4 [Dionne et al. (2006)
[4]]. The basic concept on which the model stands, that of
chains switching between the three sub-populations and
modulating reptation, is expected to break down in the
limit of τad >> τR (or large w), and hence the model should
not apply in such situations. The attachment lifetime can
be made a function of the chain stretch as in [Sarvestani
and Picu (2005) [31]]. This would lead to significant shear
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thinning in high rate flows. This effect is not considered
here but can be included in the model.

The hydrodynamic interactions are neglected in this
model both for polymers (melt state) and for fillers. Hence,
the filler excluded volume plays no direct role in the model,
i.e. fillers are similar to material points. Their presence is
felt only through the interaction with the chains. The
hydrodynamics of the fillers is expected to be important in
high rate flows and at large filler volume fractions.

Reptation
Let us consider a representative chain of the system,

which begins as a free chain and becomes at random
dangling and bridging, or remains free. The transition
probabilities are given by the respective fractions, φ1 and
φ2. Let us assume that the transition takes place every τad,
with τad > τR. The MSD (mean square displacement) of
the free chain center of mass during a τad period in the tube
direction (1D diffusion) is given as in the neat bulk by

(1)

where  , and the notation  τR(Ma) is used for
the Rouse time of the segment of length Ma (M >1), with
τR(a) being the Rouse time of the entanglement segment
of length a. The Rouse time of the whole chain is denoted
as τR(Na). Here and in the following all time quantities are
normalized by τR(a). A normalized quantity is denoted by
an overbar.

While the chain is dangling or bridging, the MSD with
respect to a given reference time t = 0 remains unchanged.
Let us consider that the representative chain undergoes a
random process of switching from one category to another,
reptating only when free.  For a realization of such random
sequence (there are   switches up to time t) one
may write the total MSD at t as

(2)

where the power qj = 0, if the chain is dangling or bridging,
and qj = 1 if the chain is free during the respective time
interval . Note that, by ergodicity, qj = 1 for
a fraction φ0 of all terms present in the product (2), such
that 〈q〉=φo.

The product in expression (2) appears when
superimposing the contribution to MSD of the various time
intervals .  MSD is described by a power
law of time over each of these intervals. In order to compute
the total MSD (superposition), it is necessary to take first
the logarithm such that the expression is rendered linear in
time. Note that when all terms in (2) have power 1 (all
chains are free), the product reduces to t, as it should.

In order to obtain the behavior of the representative
chain, it is necessary to average over all realizations of the
random process q. This leads to

(3)

The second equality holds because the process q is
uncorrelated, while the third is an approximation which is
based on Jensen’s inequality [Hughes (1995) [10]:

 (where the random process is s, and p
< 1). The approximation in eq. (3) carries the name of
Rosenstock (1969) [29] who demonstrated that the left
and the right hand side of the Jensen’s inequality approach
each other when p converges to 1 from below (which is
the case here). It is also noted that the inequality follows
from the relationship between the geometric and
arithmetic means. Numerical studies indicate that, in the
present case, the approximation is very good.

Hence, after using 〈q〉=φo, the product in eq. (3) can be
computed and the MSD results

(4)

It must be noted that out of the total population of chains
only a fraction φ0, those that are free at time zero, follow
eq. (4). A fraction  φo(1-φo) become free for the first time
after  and then follow eqn. (4) modified as

. In general, the chains

that become free for the first time in the k-th time interval,
at  , represent a fraction   of the
population and their MSD is described by the equation

. .

Moving to the limit of the continuous random walk, one
may write the Chapman-Kolmogorov equation and derive
the effective diffusion equation following the usual
procedure. If p(x, t)  is the probability that the walker is
found at position x (curvilinear along the chain) after
normalized time t  and neglecting convection, one has

.  (5)

Here, the effective “diffusion coefficient”
 (which follows from (4)), and ν is a drift

velocity. The drift is considered to occur only when the
chain is free. Otherwise the chain moves affinely with the
mesh of entanglements.

Equation (5) leads to the following fractional convection-
diffusion equation

(6)

The local fractional differential operator on the left hand
side is defined as

. (7)

This operator was introduced and its properties were
studied by Kolwankar and Gangal (1998) [14] and Soare
(2006) [32]. This maps the diffusion process from the real
time to a fractional time with a support of fractal dimension
φ0. The fractional representation results here from the
model and is not assumed. It can be shown that the solution
of eq. (6) subject to the usual boundary conditions

 (s denotes the position of a
tube segment) and the initial condition p(x,0) = δ(x) [Doi
and Edwards (1986) [6]], and under the assumption of
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time independent drift velocity v, is given by [Tikhonov and Samarskii (1963) [37]]

If ν can be considered time independent, an analytic
form of the history-independent memory kernel can be
derived from the solution (8). To this end, the drift velocity
is pre-averaged and approximated as being linear in the
curvilinear coordinate s [Ianniruberto and Marrucci (2000)
[11] ].  The memory function (and the relaxation) obtained
by this procedure is a stretched exponential having a stretch
power φ0.

All results presented above pertain to a chain that starts
as a free chain at time zero (e.g. onset of relaxation).
However, only φ0 of all chains is in this situation. The others
become free at various moments of the system evolution,
i.e. at times multiples of . The fraction of chains that
become free for the first time at  is given by φ0(1-φ0)

k.
The MSD of a chain that becomes free at  is described
by an equation identical to (4), except that the origin of t  is
shifted by . If v is a constant, one can write for these
chains .

Contour length fluctuations
All chains in the system perform contour length

fluctuations at all times. However, every time a chain
changes type, the length of the fluctuating arm changes.
For example, if the chain is free, the arm length is half the
chain length, N/2. When it is bridging or dangling, the length
of the arm can take any value between 1 and N. This is
described by the distribution function for the lengths N1
and N2 (fig. 1), function that has been evaluated by
simulations [Ozmusul et al. (2005) [23] ]. The probability
distribution function (PDF) of the arm length for systems
with large d (d > 2Rg) is almost constant, while for small d,
it is biased toward the short segments.

The situation here is similar to that of star polymers. The
nanoparticle carrying the dangling ends can be viewed as
a star with multiple polydisperse arms. Contour length
fluctuations in such systems (no detaching arms) is difficult
to approach theoretically due to the complexity of dealing
with constraint release. This problem has not been solved
to date. However, theoretical results exist for the case of
stars with monodisperse arms [Pearson and Helfand
(1984) [25]; Milner and McLeish (1997) [18] ]. The
development here is based on these results.

 The first passage time for the chain end retraction along
the primitive path up to a distance r (the normalized version
is r =r / a) is viewed as a random walk in a potential defined
by the chain configurational entropy component of the free
energy, Ueff. If the length of the fluctuating arm is constant

Fig. 1. a) Schematic representation
of the nanocomposite molecular
structure, b) The three types of
chains considered in the model

(8)

Here, L=Na is the total chain length and ℑ(t) is the
equivalent of the Devil Staircase function evaluated for a
Cantor set of fractal dimension φ0. If one measures the
fractal with “a stick” of length τad (which is the case in the
present formulation),  ℑ(t)  is given by

(9)

Hence, it follows that the MSD of eq. (4) is actually simply
, which must be compared with the

usual equation for the mean square displacement of a free
chain .

This provides a transparent physical interpretation for
the derivation. The motion of the representative chain may
be viewed as the motion of a random walker on a temporal
Cantor set of dimension φ0 and the total time spent diffusing
is equivalent with the effective length measured on the set
with a stick of size τad.

If the drift velocity cannot be considered constant over
time  t, the convection-diffusion equation (6) must be solved
numerically [Mead et al. 1995 [15], 1998 [17] ]. Due to the
fractional nature of the equation, its solution is time step
dependent; the solution diverges as the time step
decreases to zero. In order to preserve consistency with
the formulation that led to eq. (6), one has to perform the
integration with reference to τad. This renders the solution
unique.

The memory of the deformation at time zero preserved
after time t is given by the fraction of chain segments that
remain in the original tube. This can be computed using
the usual procedure [Doi and Edwards (1986) [6] ]. The
probability of survival of the tube segment s at time  is
obtained by integrating eqn. (8) over x from s-L/2 to s+L/2:

(10)

while the fraction of segments surviving in the original tube
results as the average of Ψ(s, t) over the entire chain length:

. (11)
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during the observation time t, say Ni, the first passage

condition reads , where fatt is

the attempt frequency for chain retraction. This quantity
can be taken as the inverse of the Rouse time of the
respective dangling segment of length Ni, i.e. 
Milner and McLeish (1997) [18] corrected the attempt
frequency by a multiplicative factor.

In the case considered here, the number of segments of
length a in the fluctuating segment, Ni, changes every  τad
and hence, for observation times t>>τad , the first passage
condition needs to be reformulated as

. (12)

The concept underlying eq. (12) is valid only if the
attachment time is significantly larger than the inverse of
the attempt frequency, This condition is
always fulfilled since only situations in which the
attachment time is larger than the Rouse time of the entire
chain τR(Na) are considered.

The simplest and most physically transparent form of
the effective potential Ueff  is given by [Pearson and Helfand
(1984) [25] ]

     (13)

However, this potential appears to be too stiff and
predicts a very slow relaxation associated with arm
retraction. An improved version that includes the effect of
constraint release (dynamic dilution) was developed by
Milner and McLeish (1997) [18] and reads

(14)

This expression leads to an excellent match of
experimental data and theoretical predictions for the
relaxation of melts of star polymers or blends of linear and
star polymers. Expression (14) reduces to (13) for small r.

 In order to account for all possible configurations, an
average over Ni in eq. (12) is performed:

(15)

Here, p(Ni) is the probability to find a dangling end of
length Ni, quantity which was evaluated as a function of d
and w by means of simulations [Ozmusul et al. (2005)
[23]; Dionne et al. (2006) [4] ]. This expression provides
an implicit equation for r as a function of  t. It must be
noted that this procedure neglects the speed-up of
constraint release due to the polydispersity of the arm
lengths. Nevertheless, some degree of constraint release
is incorporated in (15) through the functional form of the
potential (14) [Milner and McLeish (1997) [18] ].

Chain stretch
Let us consider again a representative chain of the

population. The chain becomes at random free, dangling

or bridging. Stretch relaxes while the chain is dangling or
free and cannot relax while the chain bridges two fillers
(follows from the assumption of the affine motion of fillers).
The stretch relaxation of the short dangling segments
formed by a bridging chain is neglected. Hence, during
relaxation, the representative chain stretch is enabled and
disabled following a random sequence with characteristic
time τad. Let us describe this random process by a function
of time, H(t, ξ), which is 0 if the chain is bridging, and is 1
if the chain is free or dangling. The stochastic parameter ξ
describes the realization of the sequence, or the trajectory,
i.e. for given ξ, H becomes a deterministic function of the
normalized time. Further, a single mode stretch relaxation
is considered, with the characteristic time being τR(Na).
The equation of evolution for the stretch λ becomes:

                    (16)

The variable v represents the drift velocity imposed by
the flow. The first term on the right hand side represents
the imposed deformation, while the second one stands for
relaxation. An approximation is made in (16) in that the
stretch relaxation time is taken to be the Rouse time of the
entire chain τR(Na) in all cases. The stretch relaxation time
of a dangling segment of length N1 < N is the Rouse time
of the respective segment. Hence, the approximation leads
to an overestimate of the stretch relaxation time.

If p(ξ) is the probability for a chain to follow the trajectory
defined by H(t, ξ), the average stretch at given time t is
denoted as  . Here the integral is
performed over the phase space defined by ξ. Applying
the averaging operator to eq. (16) leads to

   (17)

Let us consider now that all trajectories ξ are equally
probable. Then, using the ergodicity property for the
process,  and  and

 and eq. (17) becomes

.           (18)

Hence, the relaxation remains exponential, but the
characteristic time changes with the fraction φ2 of bridging
chains in the system.

Let us note that if a non-linear term in λ is used in the
relaxation term of eqn. (16), e.g. by using the Warner
approximation of the inverse Langevin function, an
evolution equation of type (17) for the average of the stretch
cannot be obtained anymore.

Stress evaluation
Let us consider a generic loading history for which the

stress evolution must be evaluated in terms of the
deformation history. Assuming that stress is due to both
segment orientation, described by the orientation tensor

, and stretch, and that one can use a multiplicative
decomposition approximation, the stress tensor becomes:
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    (19)

Where G0 is the modulus and S(t) is expressed as

  (20)

Here, Q is the Doi-Edwards tensor and  is the
relative deformation gradient tensor between times t and
t’. The sum in eq. (20) reflects the fact that the average
orientation of the chain segment population is computed
as a weighted average over all chains in the system. The
weights are φo(1-φo)

k,  the fraction of chains that become
free for the first time at , and  represent the
fraction of segments surviving at time t  in the tube defined
at time t’. As discussed in Section 3.1, if ν is a constant
from t’ to t, one can write  for

Finally, for completeness, let us note that the relative
tube-chain drift velocity is evaluated based on the average
orientation tensor S(t) and the velocity gradient k using the
approximation of constant S along tube, as

Numerical results and discussion
The behaviour of the model under various deformation

conditions is discussed next. The emphasis is on identifying
the influence of the various nanoscale parameters on the
overall, material point mechanical behavior. Of primary
interest are the wall-to-wall distance, d, and the polymer-
filler affinity, w. These parameters are represented in the
model through the fraction of free, dangling and bridging
chains, and through the mean attachment time parameter
τad, respectively. As discussed in Section 2, the average
lifetime of a polymer-filler contact, τad , scales with the
affinity w as exp(w/kBT). The relationship between d and
the three φ is more complicated and needs to be
determined by simulations [Dionne et al. (2005) [3]]. Figure
2 [Dionne (2006) [5]] shows the variation of the three
fractions with the normalized wall-to-wall distance d. The
fraction of bridging and free chains are monotonic with d,
while the fraction of dangling chains increases and then

decreases with increasing d. This variation is due to the
fact that at small d most dangling chains form bridges.
The fractions are almost independent of w in the range of
affinities studied (w = 1 … 8).

In this study, four systems are considered. Their φ  values
are given in table 1. S1 is the reference, neat polymer. S2 is
a system with no bridges in which d ~ 2.8 Rg. In this system
the number of dangling chains per filler reaches saturation,
i.e. is similar to that obtained for systems with very small
filler volume fractions. The third system, S3, corresponds
to d = 2.4 Rg and has a small fraction of bridging chains.
The fourth system, S4, has a fairly large number of bridges
per filler and corresponds to d = 1.86 Rg [Dionne (2005)
[3]]. In the simulations performed by Dionne et al. (2005)
[3], the polymer-filler affinity for systems S2-S4 was w =
1, i.e. neutral interactions. However, this parameter has a
marginal effect on the structure.

Two types of flow are considered: relaxation following
a step strain and a start-up shear flow. From the relaxation
experiment one obtains the relaxation modulus, G(t) and
the corresponding storage and loss moduli G’ and G”. In
the shear flow case, the nature of the transient in the shear
stress and the first normal stress difference, as well as
their steady state values corresponding to various strain
rates are analyzed. The various measures are evaluated
based on the normalized stress  (eq. (19))
and the time quantities are all normalized by the Rouse
time of the entanglement segment, τR(a). The reference
times are the Rouse time of the entire chain   and
the disentanglement time , both evaluated in the neat
system. The equations of the model are integrated within
the assumption of constant drift velocity v. Specifically, v is
taken to be the average over the interval t’ to t. The
approximation is good as one approaches the steady state
of the constant rate deformation and less good during the
start-up. Considering a constant drift velocity greatly
simplifies the integration of the constitutive equation.

Figure 3 shows the relaxation modulus for the four
systems. Here the curves were normalized by the value of
the shear stress at the beginning of the relaxation period.
The chain length considered was N = 20 entanglement
segments and in all systems the mean attachment time
was τad = 4τR(Na). The plot shows a significant slowing
down of dynamics with decreasing wall-to-wall distance,

Fig. 2. Variation of the fraction of free,
dangling and bridging chains with the

normalized wall-to-wall distance, d/Rg. d
measures the smallest wall-to-wall distance
in a cubic packing of spherical fillers and Rg

is the chain radius of gyration in the neat
bulk polymer

Table 1
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or conversely, with increasing the filler volume fraction.
Even the system S2 is affected by the slow down.
Furthermore, all filled systems exhibit a two stage
relaxation which is reminiscent of the two physical
processes involved: disentanglement and attachment/
detachment.

Figure 4 shows the storage and loss moduli
corresponding to the curves in figure 3. The curves for S1
are shown for reference. The right end of the frequency
range of interest is . The rise of the curves at high
frequency is not seen here because the Rouse modes are
not included in the model. The only Rouse related relaxation
is that of stretch, however, stretch is not activated in this
small amplitude and relatively low rate loading. It is seen
that the entanglement plateaus in the three systems are
identical (after shifting) as observed in experiments [Zhu
et al. (2005) [40]]. The attachment/detachment process
leads to an extension of the G’ plateau to lower frequencies.
The plateau for S2 is lower than that for S3. Furthermore,
the length of the plateau also depends on d (or filler volume
fraction), a feature which is not immediately intuitive (as

the mean attachment time is the  same in S2 and S3), but
is observed in experiments.

It should be noted that making the attachment/
detachment characteristic time polydisperse, but
preserving the mean, changes little in the qualitative
features discussed here as long as the distribution of    is
symmetric with respect to the mean. Separate studies have
shown that skewing the distribution towards short
attachment times (which is the distribution shape
suggested by the simulations of Dionne et al. (2006) [4] )
leads to lowering or even eliminating the extension of the
plateau at low frequencies. In these cases, the storage
modulus decreases continuously with decreasing
frequency just as for the neat polymer G’, but at a lower
rate than for S1. A similar behavior is seen in a purely
frictional model of the nanocomposite in which the effect
of the polymer-filler affinity is accounted for by increasing
the effective monomeric friction coefficient [Sarvestani
and Picu (2005) [31] ]. In experiments it is seen that the
secondary plateau in G’ forms only at sufficiently large filler
volume fractions [Sternstein and Zhou (2002) [36]]. At
small filler volume fractions and with short chains, there is
no plateau and G’ decays continuously with decreasing
frequency. G” follows the usual frequency dependence of
the neat polymer, with the proper shift to lower frequencies
as seen in G’.

The effect of the mean  (or w) is demonstrated in
figure 5, where G’ and G” are shown for the system S2, for

 and . Increasing the
attachment time increases the length of the plateau in G’
towards low frequencies, as expected, however, the plateau
also sets at lower values. This effect does not appear to
have been reported in experiments. In the context of this
model, the decrease of the plateau level is due to the fact
that, as   increases, the relaxation of the chains that are
free within given   period is more pronounced. As 
increases, G” shifts to the left indicating an increase of the
characteristic relaxation time of the system. The low
amplitude features of G” at high frequencies and large τad
are due to numerical inaccuracies in the integration of the
equations in that range of frequencies.

The variation of the longest relaxation characteristic
time τd with   (or the polymer-filler affinity, w) is shown
in figure 6. The time td is normalized by the disentanglement

Fig. 3. Time dependence of the normalized relaxation modulus for
systems S1, S2, S3 and S4 and for N = 20 and . The

modulus is evaluated based on the normalized stress
 (eq. (19)) and is normalized by the
value in the origin

Fig. 4. Variation of the storage and loss moduli with the frequency
(arbitrary units) for systems S1, S2 and S3 and for N = 20 and

. The relaxation curves G(t) that led to these data
have been shifted to start from the same value of stress. The

modulus is evaluated based on the normalized stress
 (eq. (19))

Fig. 5. Variation of the storage and loss moduli with the frequency
(arbitrary units) for systems S1, S2 with N = 20, and for

  and  , representing an increase
in polymer filler affinity. The modulus is evaluated based on the

normalized stress  (eq. (19))
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Fig. 8. Variation of the steady state normalized first normal stress
difference  and shear stress with strain rate for a
simple shear flow. The normalized stress tensor 
is evaluated with Eq. (19). Data for systems S2 and S3 with N = 20

and   are shown

Fig.  6. Variation of the effective longest characteristic time of the
system S2 with   representing increasing polymer-

filler affinity. The longest characteristic time is obtained from
figures  4 and 5. The dashed line is drawn to guide the eye.

time in the neat system, and τad  is normalized by the Rouse
time of the entire chain. The relationship is essentially linear
for the range of parameters studied. If the affinity w and
the spatial range over which the polymer interacts
energetically with the filler are significantly increased, a
bound polymer layer is expected to form and hence the
chain structure and the attachment/detachment process
are expected to be different from those considered here.
In such cases, the bound polymer layer effectively increases
the radius of the filler, while the free chains do not interact
with the filler, but rather with the like polymer chains and
their tethered dangling ends that form the bound layer. The
physics of this problem is slightly different and cannot be
represented with the model in its current form.

Figures 7 and 8 show results for the start-up shear flow.
Figure 7 shows the variation of the first normal stress
difference  and of the normalized shear stress

  with the strain (shear rate multiplied by normalized
time) during the transient, for various rates and for system
S3. The stretch-induced overshoot in  is observed for the
highest Wissenberg number Wi (computed with respect
to ), Wi = 4. Higher Wi number flows are expected to
be influenced more significantly by hydrodynamic

interactions involving filler particles, situations in which
the present model provides only part of the stress. The
effect of filling is to maintain the overshoot in the shear
stress down to Wi numbers on the order of 1. Figure 8
shows the steady state dimensionless shear stress and
first normal stress difference as a function of the shear
rate. The decrease of the shear stress at high rates is
attributed to the lack of convective constrain release [Mead
et al. (1998) [17] ]. At low rates, the plot exhibits the usual
slopes that lead to constant shear/extensional viscosities.
The two systems S2 and S3 exhibit the same qualitative
behavior.

Conclusions
A constitutive model for the rheology of polymer

nanocomposites was presented. The model accounts for
relaxation due to chain reptation, contour length
fluctuations and includes stretch. It accounts for the
process of chain attachment/detachment to/from fillers
and incorporates two parameters of the nanoscale
problem. These are the filler wall-to-wall distance, which
is related to the filler volume fraction, and an effective
polymer filler affinity. Increasing both of these parameters
leads to slowing down the relaxation and the extension of
the relaxation plateau in the storage modulus towards low
frequencies. The length of the plateau and the longest
relaxation time in the system depend on both parameters.
At higher frequencies, the model predicts the same
entanglement-like plateau in both filled and neat systems.
These features are also observed in experiments. The
calibration of the model can be performed based on data
for the neat polymer rheology, and based on discrete level
simulations of the structure of the respective nano-
composite system.
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